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CHAPTER 1

Introduction

This report is for developers and architects interested in developing
microservices and distributed applications. It does not explain the
basics of distributed systems, but instead focuses on the reactive
benefits to build efficient microservice systems. Microservices can
be seen as an extension of the basic idea of modularity: programs
connected by message-passing instead of direct API calls so that
they can be distributed among multiple services. Why are microser‐
vices so popular? It’s basically due to the combination of two factors:
cloud computing and the need to scale up and down quickly. Cloud
computing makes it convenient to deploy thousands of small serv‐
ices; scaling makes it necessary to do so.

In this report, we will see how Eclipse Vert.x (http://vertx.io) can be
used to build reactive microservice systems. Vert.x is a toolkit to
build reactive and distributed systems. Vert.x is incredibly flexible.
Because it’s a toolkit, you can build simple network utilities, modern
web applications, a system ingesting a huge amount of messages,
REST services, and, obviously, microservices. This malleability gives
Vert.x great popularity, a large community, and a vibrant ecosystem.
Vert.x was already promoting microservices before it became so pop‐
ular. Since the beginning, Vert.x has been tailored to build applica‐
tions composed by a set of distributed and autonomous services.
Systems using Vert.x are built upon the reactive system principles
(http://reactivemanifesto.org). They are responsive, elastic, resilient,
and use asynchronous message passing to interact.
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This report goes beyond Vert.x and microservices. It looks at the
whole environment in which a microservice system runs and intro‐
duces the many tools needed to get the desired results. On this jour‐
ney, we will learn:

• What Vert.x is and how you can use it
• What reactive means and what reactive microservices are
• How to implement microservices using HTTP or messages
• The patterns used to build reactive microservice systems
• How to deploy microservices in a virtual or cloud environment

The code presented in this report is available from https://
github.com/redhat-developer/reactive-microservices-in-java.

Preparing Your Environment
Eclipse Vert.x requires Java 8, which we use for the different exam‐
ples provided in this report. We are going to use Apache Maven to
build them. Make sure you have the following prerequisites
installed:

• JDK 1.8
• Maven 3.3+
• A command-line terminal (Bash, PowerShell, etc.)

Even if not mandatory, we recommend using an IDE such as the
Red Hat Development Suite (https://developers.redhat.com/products/
devsuite/overview). In the last chapter, we use OpenShift, a container
platform built on top of Kubernetes (https://kubernetes.io) to run
containerized microservices. To install OpenShift locally, we recom‐
mend Minishift (https://github.com/minishift/minishift) or the Red
Hat Container Development Kit (CDK) v3. You can download the
CDK from https://developers.redhat.com/products/cdk/download.

Let’s get started.
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CHAPTER 2

Understanding Reactive
Microservices and Vert.x

Microservices are not really a new thing. They arose from research
conducted in the 1970s and have come into the spotlight recently
because microservices are a way to move faster, to deliver value
more easily, and to improve agility. However, microservices have
roots in actor-based systems, service design, dynamic and auto‐
nomic systems, domain-driven design, and distributed systems. The
fine-grained modular design of microservices inevitably leads devel‐
opers to create distributed systems. As I’m sure you’ve noticed, dis‐
tributed systems are hard. They fail, they are slow, they are bound by
the CAP and FLP theorems. In other words, they are very compli‐
cated to build and maintain. That’s where reactive comes in.

30+ Years of Evolution
The actor model was introduced by C. Hewitt, P. Bishop, and R.
Steiger in 1973. Autonomic computing, a term coined in 2001,
refers to the self-managing characteristics (self-healing, self-
optimization, etc.) of distributed computing resources.

But what is reactive? Reactive is an overloaded term these days. The
Oxford dictionary defines reactive as “showing a response to a stimu‐
lus.” So, reactive software reacts and adapts its behavior based on the
stimuli it receives. However, the responsiveness and adaptability
promoted by this definition are programming challenges because
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the flow of computation isn’t controlled by the programmer but by
the stimuli. In this chapter, we are going to see how Vert.x helps you
be reactive by combining:

• Reactive programming—A development model focusing on the
observation of data streams, reacting on changes, and propagat‐
ing them

• Reactive system—An architecture style used to build responsive
and robust distributed systems based on asynchronous
message-passing

A reactive microservice is the building block of reactive microservice
systems. However, due to their asynchronous aspect, the implemen‐
tation of these microservices is challenging. Reactive programming
reduces this complexity. How? Let’s answer this question right now.

Reactive Programming

Figure 2-1. Reactive programming is about flow of data and reacting
to it

Reactive programming is a development model oriented around
data flows and the propagation of data. In reactive programming, the
stimuli are the data transiting in the flow, which are called streams.
There are many ways to implement a reactive programming model.
In this report, we are going to use Reactive Extensions
(http://reactivex.io/) where streams are called observables, and con‐
sumers subscribe to these observables and react to the values
(Figure 2-1).
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To make these concepts less abstract, let’s look at an example using
RxJava (https://github.com/ReactiveX/RxJava), a library implement‐
ing the Reactive Extensions in Java. These examples are located in
the directory reactive-programming in the code repository.

observable.subscribe(
  data -> { // onNext
    System.out.println(data);
  },
  error -> { // onError
    error.printStackTrace();
  },
  () -> { // onComplete
    System.out.println("No more data");
  }
);

In this snippet, the code is observing (subscribe) an Observable
and is notified when values transit in the flow. The subscriber can
receive three types of events. onNext is called when there is a new
value, while onError is called when an error is emitted in the stream
or a stage throws an Exception. The onComplete callback is invoked
when the end of the stream is reached, which would not occur for
unbounded streams. RxJava includes a set of operators to produce,
transform, and coordinate Observables, such as map to transform a
value into another value, or flatMap to produce an Observable or
chain another asynchronous action:

// sensor is an unbound observable publishing values.
sensor
  // Groups values 10 by 10, and produces an observable
  // with these values.
  .window(10)
  // Compute the average on each group
  .flatMap(MathObservable::averageInteger)
  // Produce a json representation of the average
  .map(average -> "{'average': " + average + "}")
  .subscribe(
    data -> {
      System.out.println(data);
    },
    error -> {
      error.printStackTrace();
    }
  );

RxJava v1.x defines different types of streams as follows:
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• Observables are bounded or unbounded streams expected to
contain a sequence of values.

• Singles are streams with a single value, generally the deferred
result of an operation, similar to futures or promises.

• Completables are streams without value but with an indication
of whether an operation completed or failed.

RxJava 2
While RxJava 2.x has been recently released, this report still uses the
previous version (RxJava 1.x). RxJava 2.x provides similar concepts.
RxJava 2 adds two new types of streams. Observable is used for
streams not supporting back-pressure, while Flowable is an
Observable with back-pressure. RxJava 2 also introduced the Maybe
type, which models a stream where there could be 0 or 1 item or an
error.

What can we do with RxJava? For instance, we can describe sequen‐
ces of asynchronous actions and orchestrate them. Let’s imagine you
want to download a document, process it, and upload it. The down‐
load and upload operations are asynchronous. To develop this
sequence, you use something like:

// Asynchronous task downloading a document
Future<String> downloadTask = download();
// Create a single completed when the document is downloaded.
Single.from(downloadTask)
  // Process the content
  .map(content -> process(content))
  // Upload the document, this asynchronous operation
  // just indicates its successful completion or failure.
  .flatMapCompletable(payload -> upload(payload))
  .subscribe(
  () -> System.out.println("Document downloaded, updated
               and uploaded"),
  t -> t.printStackTrace()
);

You can also orchestrate asynchronous tasks. For example, to com‐
bine the results of two asynchronous operations, you use the zip
operator combining values of different streams:
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// Download two documents
Single<String> downloadTask1 = downloadFirstDocument();
Single<String> downloadTask2 = downloadSecondDocument();

// When both documents are downloaded, combine them
Single.zip(downloadTask1, downloadTask2,
  (doc1, doc2) -> doc1 + "\n" + doc2)
  .subscribe(
    (doc) -> System.out.println("Document combined: " + doc),
    t -> t.printStackTrace()
  );

The use of these operators gives you superpowers: you can coordi‐
nate asynchronous tasks and data flow in a declarative and elegant
way. How is this related to reactive microservices? To answer this
question, let’s have a look at reactive systems.

Reactive Streams
You may have heard of reactive streams (http://www.reactive-
streams.org/). Reactive streams is an initiative to provide a standard
for asynchronous stream processing with back-pressure. It provides
a minimal set of interfaces and protocols that describe the opera‐
tions and entities to achieve the asynchronous streams of data with
nonblocking back-pressure. It does not define operators manipulat‐
ing the streams, and is mainly used as an interoperability layer. This
initiative is supported by Netflix, Lightbend, and Red Hat, among
others.

Reactive Systems
While reactive programming is a development model, reactive sys‐
tems is an architectural style used to build distributed systems
(http://www.reactivemanifesto.org/). It’s a set of principles used to
achieve responsiveness and build systems that respond to requests in
a timely fashion even with failures or under load.

To build such a system, reactive systems embrace a message-driven
approach. All the components interact using messages sent and
received asynchronously. To decouple senders and receivers, com‐
ponents send messages to virtual addresses. They also register to the
virtual addresses to receive messages. An address is a destination
identifier such as an opaque string or a URL. Several receivers can
be registered on the same address—the delivery semantic depends
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on the underlying technology. Senders do not block and wait for a
response. The sender may receive a response later, but in the mean‐
time, he can receive and send other messages. This asynchronous
aspect is particularly important and impacts how your application is
developed.

Using asynchronous message-passing interactions provides reactive
systems with two critical properties:

• Elasticity—The ability to scale horizontally (scale out/in)
• Resilience—The ability to handle failure and recover

Elasticity comes from the decoupling provided by message interac‐
tions. Messages sent to an address can be consumed by a set of con‐
sumers using a load-balancing strategy. When a reactive system
faces a spike in load, it can spawn new instances of consumers and
dispose of them afterward.

This resilience characteristic is provided by the ability to handle fail‐
ure without blocking as well as the ability to replicate components.
First, message interactions allow components to deal with failure
locally. Thanks to the asynchronous aspect, components do not
actively wait for responses, so a failure happening in one component
would not impact other components. Replication is also a key ability
to handle resilience. When one node-processing message fails, the
message can be processed by another node registered on the same
address.

Thanks to these two characteristics, the system becomes responsive.
It can adapt to higher or lower loads and continue to serve requests
in the face of high loads or failures. This set of principles is primor‐
dial when building microservice systems that are highly distributed,
and when dealing with services beyond the control of the caller. It is
necessary to run several instances of your services to balance the
load and handle failures without breaking the availability. We will
see in the next chapters how Vert.x addresses these topics.

Reactive Microservices
When building a microservice (and thus distributed) system, each
service can change, evolve, fail, exhibit slowness, or be withdrawn at
any time. Such issues must not impact the behavior of the whole sys‐
tem. Your system must embrace changes and be able to handle fail‐
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ures. You may run in a degraded mode, but your system should still
be able to handle the requests.

To ensure such behavior, reactive microservice systems are com‐
prised of reactive microservices. These microservices have four char‐
acteristics:

• Autonomy
• Asynchronisity
• Resilience
• Elasticity

Reactive microservices are autonomous. They can adapt to the avail‐
ability or unavailability of the services surrounding them. However,
autonomy comes paired with isolation. Reactive microservices can
handle failure locally, act independently, and cooperate with others
as needed. A reactive microservice uses asynchronous message-
passing to interact with its peers. It also receives messages and has
the ability to produce responses to these messages.

Thanks to the asynchronous message-passing, reactive microservi‐
ces can face failures and adapt their behavior accordingly. Failures
should not be propagated but handled close to the root cause. When
a microservice blows up, the consumer microservice must handle
the failure and not propagate it. This isolation principle is a key
characteristic to prevent failures from bubbling up and breaking the
whole system. Resilience is not only about managing failure, it’s also
about self-healing. A reactive microservice should implement recov‐
ery or compensation strategies when failures occur.

Finally, a reactive microservice must be elastic, so the system can
adapt to the number of instances to manage the load. This implies a
set of constraints such as avoiding in-memory state, sharing state
between instances if required, or being able to route messages to the
same instances for stateful services.

What About Vert.x ?
Vert.x is a toolkit for building reactive and distributed systems using
an asynchronous nonblocking development model. Because it’s a
toolkit and not a framework, you use Vert.x as any other library. It
does not constrain how you build or structure your system; you use
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it as you want. Vert.x is very flexible; you can use it as a standalone
application or embedded in a larger one.

From a developer standpoint, Vert.x a set of JAR files. Each Vert.x
module is a JAR file that you add to your $CLASSPATH. From HTTP
servers and clients, to messaging, to lower-level protocols such as
TCP or UDP, Vert.x provides a large set of modules to build your
application the way you want. You can pick any of these modules in
addition to Vert.x Core (the main Vert.x component) to build your
system. Figure 2-2 shows an excerpt view of the Vert.x ecosystem.

Figure 2-2. An incomplete overview of the Vert.x ecosystem
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Vert.x also provides a great stack to help build microservice systems.
Vert.x pushed the microservice approach before it became popular.
It has been designed and built to provide an intuitive and powerful
way to build microservice systems. And that’s not all. With Vert.x
you can build reactive microservices. When building a microservice
with Vert.x, it infuses one of its core characteristics to the microser‐
vice: it becomes asynchronous all the way.

Asynchronous Development Model
All applications built with Vert.x are asynchronous. Vert.x applica‐
tions are event-driven and nonblocking. Your application is notified
when something interesting happens. Let’s look at a concrete exam‐
ple. Vert.x provides an easy way to create an HTTP server. This
HTTP server is notified every time an HTTP request is received:

vertx.createHttpServer()
    .requestHandler(request -> {
        // This handler will be called every time an HTTP
        // request is received at the server
        request.response().end("hello Vert.x");
    })
    .listen(8080);

In this example, we set a requestHandler to receive the HTTP
requests (event) and send hello Vert.x back (reaction). A Handler
is a function called when an event occurs. In our example, the code
of the handler is executed with each incoming request. Notice that a
Handler does not return a result. However, a Handler can provide a
result. How this result is provided depends on the type of interac‐
tion. In the last snippet, it just writes the result into the HTTP
response. The Handler is chained to a listen request on the socket.
Invoking this HTTP endpoint produces a simple HTTP response:

HTTP/1.1 200 OK
Content-Length: 12

hello Vert.x

With very few exceptions, none of the APIs in Vert.x block the call‐
ing thread. If a result can be provided immediately, it will be
returned; otherwise, a Handler is used to receive events at a later
time. The Handler is notified when an event is ready to be processed
or when the result of an asynchronous operation has been compu‐
ted.
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1 This code uses the lambda expressions introduced in Java 8. More details about this
notation can be found at http://bit.ly/2nsyJJv.

In traditional imperative programming, you would write something
like:

int res = compute(1, 2);

In this code, you wait for the result of the method. When switching
to an asynchronous nonblocking development model, you pass a
Handler invoked when the result is ready:1

compute(1, 2, res -> {
    // Called with the result
});

In the last snippet, compute does not return a result anymore, so you
don’t wait until this result is computed and returned. You pass a
Handler that is called when the result is ready.

Thanks to this nonblocking development model, you can handle a
highly concurrent workload using a small number of threads. In
most cases, Vert.x calls your handlers using a thread called an event
loop. This event loop is depicted in Figure 2-3. It consumes a queue
of events and dispatches each event to the interested Handlers.

Figure 2-3. The event loop principle

The threading model proposed by the event loop has a huge benefit:
it simplifies concurrency. As there is only one thread, you are always
called by the same thread and never concurrently. However, it also
has a very important rule that you must obey:
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Don’t block the event loop.
—Vert.x golden rule

Because nothing blocks, an event loop can deliver a huge number of
events in a short amount of time. This is called the reactor pattern
(https://en.wikipedia.org/wiki/Reactor_pattern).

Let’s imagine, for a moment, that you break the rule. In the previous
code snippet, the request handler is always called from the same
event loop. So, if the HTTP request processing blocks instead of
replying to the user immediately, the other requests would not be
handled in a timely fashion and would be queued, waiting for the
thread to be released. You would lose the scalability and efficiency
benefit of Vert.x. So what can be blocking? The first obvious example
is JDBC database accesses. They are blocking by nature. Long com‐
putations are also blocking. For example, a code calculating Pi to the
200,000th decimal point is definitely blocking. Don’t worry—Vert.x
also provides constructs to deal with blocking code.

In a standard reactor implementation, there is a single event loop
thread that runs around in a loop delivering all events to all handlers
as they arrive. The issue with a single thread is simple: it can only
run on a single CPU core at one time. Vert.x works differently here.
Instead of a single event loop, each Vert.x instance maintains several
event loops, which is called a multireactor pattern, as shown in
Figure 2-4.

Figure 2-4. The multireactor principle

The events are dispatched by the different event loops. However,
once a Handler is executed by an event loop, it will always be
invoked by this event loop, enforcing the concurrency benefits of the
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reactor pattern. If, like in Figure 2-4, you have several event loops, it
can balance the load on different CPU cores. How does that work
with our HTTP example? Vert.x registers the socket listener once
and dispatches the requests to the different event loops.

Verticles—the Building Blocks
Vert.x gives you a lot of freedom in how you can shape your applica‐
tion and code. But it also provides bricks to easily start writing
Vert.x applications and comes with a simple, scalable, actor-like
deployment and concurrency model out of the box. Verticles are
chunks of code that get deployed and run by Vert.x. An application,
such as a microservice, would typically be comprised of many verti‐
cle instances running in the same Vert.x instance at the same time. A
verticle typically creates servers or clients, registers a set of
Handlers, and encapsulates a part of the business logic of the sys‐
tem.

Regular verticles are executed on the Vert.x event loop and can never
block. Vert.x ensures that each verticle is always executed by the
same thread and never concurrently, hence avoiding synchroniza‐
tion constructs. In Java, a verticle is a class extending the Abstract
Verticle class:

import io.vertx.core.AbstractVerticle;

public class MyVerticle extends AbstractVerticle {
    @Override
    public void start() throws Exception {
        // Executed when the verticle is deployed
    }

    @Override
    public void stop() throws Exception {
        // Executed when the verticle is un-deployed
    }
}

Worker Verticle
Unlike regular verticles, worker verticles are not executed on the
event loop, which means they can execute blocking code. However,
this limits your scalability.
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Verticles have access to the vertx member (provided by the
AbstractVerticle class) to create servers and clients and to interact
with the other verticles. Verticles can also deploy other verticles,
configure them, and set the number of instances to create. The
instances are associated with the different event loops (implement‐
ing the multireactor pattern), and Vert.x balances the load among
these instances.

From Callbacks to Observables
As seen in the previous sections, the Vert.x development model uses
callbacks. When orchestrating several asynchronous actions, this
callback-based development model tends to produce complex code.
For example, let’s look at how we would retrieve data from a data‐
base. First, we need a connection to the database, then we send a
query to the database, process the results, and release the connec‐
tion. All these operations are asynchronous. Using callbacks, you
would write the following code using the Vert.x JDBC client:

client.getConnection(conn -> {
    if (conn.failed()) {/* failure handling */}
    else {
        SQLConnection connection = conn.result();
        connection.query("SELECT * from PRODUCTS", rs -> {
            if (rs.failed()) {/* failure handling */}
            else {
                List<JsonArray> lines =
                    rs.result().getResults();
                for (JsonArray l : lines) {
                    System.out.println(new Product(l));
                }
                connection.close(done -> {
                    if (done.failed()) {/* failure handling */}
                });
            }
        });
    }
});

While still manageable, the example shows that callbacks can
quickly lead to unreadable code. You can also use Vert.x Futures to
handle asynchronous actions. Unlike Java Futures, Vert.x Futures
are nonblocking. Futures provide higher-level composition opera‐
tors to build sequences of actions or to execute actions in parallel.
Typically, as demonstrated in the next snippet, we compose futures
to build the sequence of asynchronous actions:
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Future<SQLConnection> future = getConnection();
future
    .compose(conn -> {
        connection.set(conn);
        // Return a future of ResultSet
        return selectProduct(conn);
    })
    // Return a collection of products by mapping
    // each row to a Product
    .map(result -> toProducts(result.getResults()))
    .setHandler(ar -> {
        if (ar.failed()) { /* failure handling */ }
        else {
            ar.result().forEach(System.out::println);
        }
        connection.get().close(done -> {
            if (done.failed()) { /* failure handling */ }
        });
    });

However, while Futures make the code a bit more declarative, we
are retrieving all the rows in one batch and processing them. This
result can be huge and take a lot of time to be retrieved. At the same
time, you don’t need the whole result to start processing it. We can
process each row one by one as soon as you have them. Fortunately,
Vert.x provides an answer to this development model challenge and
offers you a way to implement reactive microservices using a reac‐
tive programming development model. Vert.x provides RxJava APIs
to:

• Combine and coordinate asynchronous tasks
• React to incoming messages as a stream of input

Let’s rewrite the previous code using the RxJava APIs:

// We retrieve a connection and cache it,
// so we can retrieve the value later.
Single<SQLConnection> connection = client
  .rxGetConnection();
connection
  .flatMapObservable(conn ->
    conn
      // Execute the query
      .rxQueryStream("SELECT * from PRODUCTS")
      // Publish the rows one by one in a new Observable
      .flatMapObservable(SQLRowStream::toObservable)
      // Don't forget to close the connection
      .doAfterTerminate(conn::close)
  )
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  // Map every row to a Product
  .map(Product::new)
  // Display the result one by one
  .subscribe(System.out::println);

In addition to improving readability, reactive programming allows
you to subscribe to a stream of results and process items as soon as
they are available. With Vert.x you can choose the development
model you prefer. In this report, we will use both callbacks and
RxJava.

Let’s Start Coding!
It’s time for you to get your hands dirty. We are going to use Apache
Maven and the Vert.x Maven plug-in to develop our first Vert.x
application. However, you can use whichever tool you want (Gradle,
Apache Maven with another packaging plug-in, or Apache Ant).
You will find different examples in the code repository (in the
packaging-examples directory). The code shown in this section is
located in the hello-vertx directory.

Project Creation
Create a directory called my-first-vertx-app and move into this
directory:

mkdir my-first-vertx-app
cd my-first-vertx-app

Then, issue the following command:

mvn io.fabric8:vertx-maven-plugin:1.0.5:setup \
  -DprojectGroupId=io.vertx.sample \
  -DprojectArtifactId=my-first-vertx-app \
  -Dverticle=io.vertx.sample.MyFirstVerticle

This command generates the Maven project structure, configures
the vertx-maven-plugin, and creates a verticle class (io.vertx.sam
ple.MyFirstVerticle), which does nothing.

Write Your First Verticle
It’s now time to write the code for your first verticle. Modify the
src/main/java/io/vertx/sample/MyFirstVerticle.java file with
the following content:
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package io.vertx.sample;

import io.vertx.core.AbstractVerticle;

/**
 * A verticle extends the AbstractVerticle class.
 */
public class MyFirstVerticle extends AbstractVerticle {

  @Override
  public void start() throws Exception {
    // We create a HTTP server object
    vertx.createHttpServer()
      // The requestHandler is called for each incoming
      // HTTP request, we print the name of the thread
      .requestHandler(req -> {
        req.response().end("Hello from "
          + Thread.currentThread().getName());
      })
      .listen(8080); // start the server on port 8080
  }
}

To run this application, launch:

mvn compile vertx:run

If everything went fine, you should be able to see your application
by opening http://localhost:8080 in a browser. The vertx:run goal
launches the Vert.x application and also watches code alterations. So,
if you edit the source code, the application will be automatically
recompiled and restarted.

Let’s now look at the application output:

Hello from vert.x-eventloop-thread-0

The request has been processed by the event loop 0. You can try to
emit more requests. The requests will always be processed by the
same event loop, enforcing the concurrency model of Vert.x. Hit
Ctrl+C to stop the execution.

Using RxJava
At this point, let’s take a look at the RxJava support provided by
Vert.x to better understand how it works. In your pom.xml file, add
the following dependency:
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<dependency>
  <groupId>io.vertx</groupId>
  <artifactId>vertx-rx-java</artifactId>
</dependency>

Next, change the <vertx.verticle> property to be io.vertx.sam
ple.MyFirstRXVerticle. This property tells the Vert.x Maven plug-
in which verticle is the entry point of the application. Create the new
verticle class (io.vertx.sample.MyFirstRXVerticle) with the fol‐
lowing content:

package io.vertx.sample;

// We use the .rxjava. package containing the RX-ified APIs
import io.vertx.rxjava.core.AbstractVerticle;
import io.vertx.rxjava.core.http.HttpServer;

public class MyFirstRXVerticle extends AbstractVerticle {

  @Override
  public void start() {
    HttpServer server = vertx.createHttpServer();
    // We get the stream of request as Observable
    server.requestStream().toObservable()
      .subscribe(req ->
        // for each HTTP request, this method is called
        req.response().end("Hello from "
          + Thread.currentThread().getName())
      );
    // We start the server using rxListen returning a
    // Single of HTTP server. We need to subscribe to
    // trigger the operation
    server
      .rxListen(8080)
      .subscribe();
  }
}

The RxJava variants of the Vert.x APIs are provided in packages with
rxjava in their name. RxJava methods are prefixed with rx, such as
rxListen. In addition, the APIs are enhanced with methods provid‐
ing Observable objects on which you can subscribe to receive the
conveyed data.
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Packaging Your Application as a Fat Jar
The Vert.x Maven plug-in packages the application in a fat jar. Once
packaged, you can easily launch the application using java -jar
<name>.jar:

mvn clean package
cd target
java -jar my-first-vertx-app-1.0-SNAPSHOT.jar

The application is up again, listening for HTTP traffic on the port
specified. Hit Ctrl+C to stop it.

As an unopinionated toolkit, Vert.x does not promote one packag‐
ing model over another—you are free to use the packaging model
you prefer. For instance, you could use fat jars, a filesystem
approach with libraries in a specific directory, or embed the applica‐
tion in a war file and start Vert.x programmatically.

In this report, we will use fat jars, i.e., self-contained JAR embedding
the code of the application, its resources, as well as all of its depen‐
dencies. This includes Vert.x, the Vert.x components you are using,
and their dependencies. This packaging model uses a flat class
loader mechanism, which makes it easier to understand application
startup, dependency ordering, and logs. More importantly, it helps
reduce the number of moving pieces that need to be installed in pro‐
duction. You don’t deploy an application to an existing app server.
Once it is packaged in its fat jar, the application is ready to run with
a simple java -jar <name.jar>. The Vert.x Maven plug-in builds a
fat jar for you, but you can use another Maven plug-in such as the
maven-shader-plugin too.

Logging, Monitoring, and Other Production Elements
Having fat jar is a great packaging model for microservices and
other types of applications as they simplify the deployment and
launch. But what about the features generally offered by app servers
that make your application production ready? Typically, we expect to
be able to write and collect logs, monitor the application, push
external configuration, add health checks, and so on.

Don’t worry—Vert.x provides all these features. And because Vert.x
is neutral, it provides several alternatives, letting you choose or
implement your own. For example, for logging, Vert.x does not push
a specific logging framework but instead allows you to use any log‐
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ging framework you want, such as Apache Log4J 1 or 2, SLF4J, or
even JUL (the JDK logging API). If you are interested in the mes‐
sages logged by Vert.x itself, the internal Vert.x logging can be con‐
figured to use any of these logging frameworks. Monitoring Vert.x
applications is generally done using JMX. The Vert.x Dropwizard
Metric module provides Vert.x metrics to JMX. You can also choose
to publish these metrics to a monitoring server such as Prometheus
(https://prometheus.io/) or CloudForms (https://www.redhat.com/en/
technologies/management/cloudforms).

Summary
In this chapter we learned about reactive microservices and Vert.x.
You also created your first Vert.x application. This chapter is by no
means a comprehensive guide and just provides a quick introduc‐
tion to the main concepts. If you want to go further on these topics,
check out the following resources:

• Reactive programming vs. Reactive systems
• The Reactive Manifesto
• RxJava website
• Reactive Programming with RxJava
• The Vert.x website
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CHAPTER 3

Building Reactive Microservices

In this chapter, we will build our first microservices with Vert.x. As
most microservice systems use HTTP interactions, we are going to
start with HTTP microservices. But because systems consist of mul‐
tiple communicating microservices, we will build another microser‐
vice that consumes the first one. Then, we will demonstrate why
such a design does not completely embrace reactive microservices.
Finally, we will implement message-based microservices to see how
messaging improves the reactiveness.

First Microservices
In this chapter we are going to implement the same set of microser‐
vices twice. The first microservice exposes a hello service that we will
call hello microservice. Another consumes this service twice (concur‐
rently). The consumer will be called hello consumer microservice.
This small system illustrates not only how a service is served, but
also how it is consumed. On the left side of Figure 3-1, the microser‐
vices are using HTTP interactions. The hello consumer microser‐
vice uses an HTTP client to invoke the hello microservice. On the
right side, the hello consumer microservice uses messages to interact
with the hello microservice. This difference impacts the reactiveness
of the system.
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Figure 3-1. The microservices implemented in this chapter using HTTP
and message-based interactions

In the previous chapter, we saw two different ways to use Vert.x
APIs: callbacks and RxJava. To illustrate the differences and help you
find your preferred approach, the hello microservices are imple‐
mented using the callback-based development model, while the con‐
sumers are implemented using RxJava.

Implementing HTTP Microservices
Microservices often expose their API via HTTP and are consumed
using HTTP requests. Let’s see how these HTTP interactions can be
implemented with Vert.x. The code developed in this section is
available in the microservices/hello-microservice-http direc‐
tory of the code repository.

Getting Started
Create a directory called hello-microservice-http and then gen‐
erate the project structure:

mkdir hello-microservice-http
cd hello-microservice-http

mvn io.fabric8:vertx-maven-plugin:1.0.5:setup \
  -DprojectGroupId=io.vertx.microservice \
  -DprojectArtifactId=hello-microservice-http \
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  -Dverticle=io.vertx.book.http.HelloMicroservice \
  -Ddependencies=web

This command generates the Maven project and configures the
Vert.x Maven plug-in. In addition, it adds the vertx-web depend‐
ency. Vert.x Web is a module that provides everything you need to
build modern web applications on top of Vert.x.

The Verticle
Open src/main/java/io/vertx/book/http/HelloMicroser

vice.java. The generated code of the verticle does nothing very
interesting, but it’s a starting point:

package io.vertx.book.http;

import io.vertx.core.AbstractVerticle;

public class HelloMicroservice extends AbstractVerticle {

    @Override
    public void start() {

    }
}

Now, launch the following Maven command:

mvn compile vertx:run

You can now edit the verticle. Every time you save the file, the appli‐
cation will be recompiled and restarted automatically.

HTTP Microservice
It’s time to make our MyVerticle class do something. Let’s start with
an HTTP server. As seen in the previous chapter, to create an HTTP
server with Vert.x you just use:

@Override
public void start() {
    vertx.createHttpServer()
        .requestHandler(req -> req.response()
          .end("hello"))
        .listen(8080);
}

Once added and saved, you should be able to see hello at http://
localhost:8080 in a browser. This code creates an HTTP server on
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port 8080 and registers a requestHandler that is invoked on each
incoming HTTP request. For now, we just write hello in the
response.

Using Routes and Parameters
Many services are invoked through web URLs, so checking the path
is crucial to knowing what the request is asking for. However, doing
path checking in the requestHandler to implement different actions
can get complicated. Fortunately, Vert.x Web provides a Router on
which we can register Routes. Routes are the mechanism by which
Vert.x Web checks the path and invokes the associated action. Let’s
rewrite the start method, with two routes:

@Override
public void start() {
    Router router = Router.router(vertx);
    router.get("/").handler(rc -> rc.response().end("hello"));
    router.get("/:name").handler(rc -> rc.response()
        .end("hello " + rc.pathParam("name")));

    vertx.createHttpServer()
        .requestHandler(router::accept)
        .listen(8080);
}

Once we have created the Router object, we register two routes. The
first one handles requests on / and just writes hello. The second
route has a path parameter (:name). The handler appends the passed
value to the greeting message. Finally, we change the
requestHandler of the HTTP server to use the accept method of
the router.

If you didn’t stop the vertx:run execution, you should be able to
open a browser to:

• http://localhost:8080—You should see hello
• http://localhost:8080/vert.x—You should see hello vert.x

Producing JSON
JSON is often used in microservices. Let’s modify the previous class
to produce JSON payloads:
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@Override
public void start() {
    Router router = Router.router(vertx);
    router.get("/").handler(this::hello);
    router.get("/:name").handler(this::hello);
    vertx.createHttpServer()
        .requestHandler(router::accept)
        .listen(8080);
}

private void hello(RoutingContext rc) {
    String message = "hello";
    if (rc.pathParam("name") != null) {
        message += " " + rc.pathParam("name");
    }
    JsonObject json = new JsonObject().put("message", message);
    rc.response()
        .putHeader(HttpHeaders.CONTENT_TYPE, "application/json")
        .end(json.encode());
}

Vert.x provides a JsonObject class to create and manipulate JSON
structures. With this code in place, you should be able to open a
browser to:

• http://localhost:8080—You should see {"message": "hello"}
• http://localhost:8080/vert.x—You should see {"message":

"hello vert.x"}

Packaging and Running
Stop the vertx:run execution using Ctrl+C and execute the follow‐
ing command from the same directory:

mvn package

This produces a fat jar in the target directory: hello-

microservice-http-1.0-SNAPSHOT.jar. While fat jars tend to be
fat, here the JAR has a reasonable size (~6.3 MB) and contains
everything to run the application:

java -jar target/hello-microservice-http-1.0-SNAPSHOT.jar

You can check to make sure it is running by opening: http://local
host:8080. Keep the process running as the next microservice will
invoke it.
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Consuming HTTP Microservices
One microservice does not form an application; you need a system
of microservices. Now that we have our first microservice running,
let’s write a second microservice to consume it. This second micro‐
service also provides an HTTP facade to invoke it, and on each
invocation calls the microservice we just implemented. The code
shown in this section is available in the microservices/hello-
consumer-microservice-http directory of the code repository.

Project Creation
As usual, let’s create a new project:

mkdir hello-consumer-microservice-http
cd hello-consumer-microservice-http

mvn io.fabric8:vertx-maven-plugin:1.0.5:setup \
  -DprojectGroupId=io.vertx.microservice \
  -DprojectArtifactId=hello-consumer-microservice-http \
  -Dverticle=io.vertx.book.http.HelloConsumerMicroservice \
  -Ddependencies=web,web-client,rx

The last command adds another dependency: the Vert.x web client,
an asynchronous HTTP client. We will use this client to call the first
microservice. The command has also added the Vert.x RxJava bind‐
ing we are going to use later.

Now edit the src/main/java/io/vertx/book/http/HelloConsumer
Microservice.java file and update it to contain:

package io.vertx.book.http;

import io.vertx.core.AbstractVerticle;
import io.vertx.core.json.JsonObject;
import io.vertx.ext.web.*;
import io.vertx.ext.web.client.*;
import io.vertx.ext.web.codec.BodyCodec;

public class HelloConsumerMicroservice extends AbstractVerticle {

    private WebClient client;

    @Override
    public void start() {
        client = WebClient.create(vertx);

        Router router = Router.router(vertx);
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        router.get("/").handler(this::invokeMyFirstMicroservice);

        vertx.createHttpServer()
            .requestHandler(router::accept)
            .listen(8081);
    }

    private void invokeMyFirstMicroservice(RoutingContext rc) {
        HttpRequest<JsonObject> request = client
            .get(8080, "localhost","/vert.x")
            .as(BodyCodec.jsonObject());

        request.send(ar -> {
            if (ar.failed()) {
                rc.fail(ar.cause());
            } else {
                rc.response().end(ar.result().body().encode());
            }
        });
    }

}

In the start method, we create a WebClient and a Router. On the
created router, we register a route on “/” and start the HTTP server,
passing the router accept method as requestHandler. The handler
of the route is a method reference (hello). This method uses the
web client to invoke the first microservice with a specific path (/
vert.x) and write the result to the HTTP response.

Once the HTTP request is created, we call send to emit the request.
The handler we passed in is invoked when either the response
arrives or an error occurs. The if-else block checks to see whether
the invocation has succeeded. Don’t forget that it’s a remote interac‐
tion and has many reasons to fail. For instance, the first microser‐
vice may not be running. When it succeeds, we write the received
payload to the response; otherwise, we reply with a 500 response.

Calling the Service More Than Once
Now let’s change the current behavior to call the hello microservice
twice with two different (path) parameters:
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HttpRequest<JsonObject> request1 = client
    .get(8080, "localhost", "/Luke")
    .as(BodyCodec.jsonObject());
HttpRequest<JsonObject> request2 = client
    .get(8080, "localhost", "/Leia")
    .as(BodyCodec.jsonObject());

These two requests are independent and can be executed concur‐
rently. But here we want to write a response assembling both results.
The code required to invoke the service twice and assemble the two
results can become convoluted. We need to check to see whether or
not the other request has been completed when we receive one of
the responses. While this code would still be manageable for two
requests, it becomes overly complex when we need to handle more.
Fortunately, as noted in the previous chapter, we can use reactive
programming and RxJava to simplify this code.

We instruct the vertx-maven-plugin to import the Vert.x RxJava
API. In the HelloConsumerMicroservice, we replace the import
statements with:

import io.vertx.core.json.JsonObject;
import io.vertx.rxjava.core.AbstractVerticle;
import io.vertx.rxjava.ext.web.*;
import io.vertx.rxjava.ext.web.client.*;
import io.vertx.rxjava.ext.web.codec.BodyCodec;
import rx.Single;

With RX, the complex code we would have written to call the two
requests and build a response out of them becomes much simpler:

private void invokeMyFirstMicroservice(RoutingContext rc) {
    HttpRequest<JsonObject> request1 = client
        .get(8080, "localhost", "/Luke")
        .as(BodyCodec.jsonObject());
    HttpRequest<JsonObject> request2 = client
        .get(8080, "localhost", "/Leia")
        .as(BodyCodec.jsonObject());
    Single<JsonObject> s1 = request1.rxSend()
      .map(HttpResponse::body);
    Single<JsonObject> s2 = request2.rxSend()
      .map(HttpResponse::body);
    Single
        .zip(s1, s2, (luke, leia) -> {
            // We have the results of both requests in Luke and Leia
            return new JsonObject()
                .put("Luke", luke.getString("message"))
                .put("Leia", leia.getString("message"));
        })
        .subscribe(
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            result -> rc.response().end(result.encodePrettily()),
            error -> {
              error.printStackTrace();
              rc.response()
                .setStatusCode(500).end(error.getMessage());
            }
        );
}

Notice the rxSend method calls. The RxJava methods from Vert.x
are prefixed with rx to be easily recognizable. The result of rxSend is
a Single, i.e., an observable of one element representing the
deferred result of an operation. The single.zip method takes as
input a set of Single, and once all of them have received their value,
calls a function with the results. Single.zip produces another
Single containing the result of the function. Finally, we subscribe.
This method takes two functions as parameters:

1. The first one is called with the result of the zip function (a
JSON object). We write the receive JSON payload into the
HTTP response.

2. The second one is called if something fails (timeout, exception,
etc.). In this case, we respond with an empty JSON object.

With this code in place, if we open http://localhost:8081 and the
hello microservice is still running we should see:

{
  "Luke" : "hello Luke",
  "Leia" : "hello Leia"
}

Are These Microservices Reactive
Microservices?
At this point we have two microservices. They are independent and
can be deployed and updated at their own pace. They also interact
using a lightweight protocol (HTTP). But are they reactive micro‐
services? No, they are not. Remember, to be called reactive a micro‐
service must be:

• Autonomous
• Asynchronous
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• Resilient
• Elastic

The main issue with the current design is the tight coupling between
the two microservices. The web client is configured to target the first
microservice explicitly. If the first microservice fails, we won’t be
able to recover by calling another one. If we are under load, creating
a new instance of the hello microservice won’t help us. Thanks to the
Vert.x web client, the interactions are asynchronous. However, as we
don’t use a virtual address (destination) to invoke the microservice,
but its direct URL, it does not provide the resilience and elasticity
we need.

It’s important to note that using reactive programming as in the sec‐
ond microservice does not give you the reactive system’s benefits. It
provides an elegant development model to coordinate asynchronous
actions, but it does not provide the resilience and elasticity we need.

Can we use HTTP for reactive microservices? Yes. But this requires
some infrastructure to route virtual URLs to a set of services. We
also need to implement a load-balancing strategy to provide elastic‐
ity and health-check support to improve resilience.

Don’t be disappointed. In the next section we will take a big step
toward reactive microservices.

The Vert.x Event Bus—A Messaging Backbone
Vert.x offers an event bus allowing the different components of an
application to interact using messages. Messages are sent to addresses
and have a set of headers and a body. An address is an opaque string
representing a destination. Message consumers register themselves
to addresses to receive the messages. The event bus is also clustered,
meaning it can dispatch messages over the network between dis‐
tributed senders and consumers. By starting a Vert.x application in
cluster mode, nodes are connected to enable shared data structure,
hard-stop failure detection, and load-balancing group communica‐
tion. The event bus can dispatch messages among all the nodes in
the cluster. To create such a clustered configuration, you can use
Apache Ignite, Apache Zookeeper, Infinispan, or Hazelcast. In this
report, we are going to use Infinispan, but we won’t go into
advanced configuration. For that, refer to the Infinispan documen‐
tation (http://infinispan.org/). While Infinispan (or the technology
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you choose) manages the node discovery and inventory, the event
bus communication uses direct peer-to-peer TCP connections.

The event bus provides three types of delivery semantics. First, the
send method allows a component to send a message to an address.
A single consumer is going to receive the message. If more than one
consumer is registered on this address, Vert.x applies a round-robin
strategy to select a consumer:

// Consumer
vertx.eventBus().consumer("address", message -> {
    System.out.println("Received: '" + message.body() + "'");
});
// Sender
vertx.eventBus().send("address", "hello");

In contrast to send, you can use the publish method to deliver the
message to all consumers registered on the address. Finally, the send
method can be used with a reply handler. This request/response
mechanism allows implementing message-based asynchronous
interactions between two components:

// Consumer
vertx.eventBus().consumer("address", message -> {
    message.reply("pong");
});
// Sender
vertx.eventBus().send("address", "ping", reply -> {
    if (reply.succeeded()) {
        System.out.println("Received: " + reply.result().body());
    } else {
        // No reply or failure
        reply.cause().printStackTrace();
    }
});

If you are using Rx-ified APIs, you can use the rxSend method,
which returns a Single. This Single receives a value when the reply
is received. We are going to see this method in action shortly.

Message-Based Microservices
Let’s reimplement the hello microservice, this time using an event
bus instead of an HTTP server to receive the request. The microser‐
vice replied to the message to provide the response.
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Project Creation
Let’s create a new project. This time we are going to add the Infini‐
span dependency, an in-memory data grid that will be used to man‐
age the cluster:

mkdir hello-microservice-message
cd hello-microservice-message

mvn io.fabric8:vertx-maven-plugin:1.0.5:setup \
  -DprojectGroupId=io.vertx.microservice \
  -DprojectArtifactId=hello-microservice-message \
  -Dverticle=io.vertx.book.message.HelloMicroservice \
  -Ddependencies=infinispan

Once generated, we may need to configure Infinispan to build the
cluster. The default configuration uses multicast to discover the
nodes. If your network supports multicast, it should be fine. Other‐
wise, check the resource/cluster directory of the code repository.

Writing the Message-Driven Verticle
Edit the src/main/java/io/vertx/book/message/HelloMicroser
vice.java file and update the start method to be:

@Override
public void start() {
    // Receive message from the address 'hello'
    vertx.eventBus().<String>consumer("hello", message -> {
        JsonObject json = new JsonObject()
            .put("served-by", this.toString());
        // Check whether we have received a payload in the
        // incoming message
        if (message.body().isEmpty()) {
            message.reply(json.put("message", "hello"));
        } else {
            message.reply(json.put("message",
              "hello " + message.body()));
        }
    });
}

This code retrieves the eventBus from the vertx object and registers
a consumer on the address hello. When a message is received, it
replies to it. Depending on whether or not the incoming message
has an empty body, we compute a different response. As in the
example in the previous chapter, we send a JSON object back. You
may be wondering why we added the served-by entry in the JSON.
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You’ll see why very soon. Now that the verticle is written, it’s time to
launch it with:

mvn compile vertx:run \
  -Dvertx.runArgs="-cluster -Djava.net.preferIPv4Stack=true"

The -cluster tells Vert.x to start in cluster mode.

Now let’s write a microservice consuming this service.

Initiating Message-Based Interactions
In this section, we will create another microservice to invoke the
hello microservice by sending a message to the hello address and
get a reply. The microservice will reimplement the same logic as in
the previous chapter and invoke the service twice (once with Luke
and once with Leia).

As usual, let’s create a new project:

mkdir hello-consumer-microservice-message
cd hello-consumer-microservice-message

mvn io.fabric8:vertx-maven-plugin:1.0.5:setup \
  -DprojectGroupId=io.vertx.microservice \
  -DprojectArtifactId=hello-consumer-microservice-message \
  -Dverticle=io.vertx.book.message.HelloConsumerMicroservice \
  -Ddependencies=infinispan,rx

Here we also add the Vert.x RxJava support to benefit from the RX-
ified APIs provided by Vert.x. If you updated the Infinispan configu‐
ration in the previous section, you need to copy it to this new
project.

Now edit the io.vertx.book.message.HelloConsumerMicroser
vice. Since we are going to use RxJava, change the import statement
to match io.vertx.rxjava.core.AbstractVerticle. Then imple‐
ment the start method with:

@Override
public void start() {
  EventBus bus = vertx.eventBus();
  Single<JsonObject> obs1 = bus
    .<JsonObject>rxSend("hello", "Luke")
    .map(Message::body);
  Single<JsonObject> obs2 = bus
    .<JsonObject>rxSend("hello", "Leia")
    .map(Message::body);
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  Single
    .zip(obs1, obs2, (luke, leia) ->
      new JsonObject()
        .put("Luke", luke.getString("message"))
        .put("Leia", leia.getString("message"))
    )
    .subscribe(
      x -> System.out.println(x.encode()),
      Throwable::printStackTrace);
}

This code is very similar to the code from the previous chapter.
Instead of using a WebClient to invoke an HTTP endpoint, we will
use the event bus to send a message to the hello address and extract
the body of the reply. We use the zip operation to retrieve the two
responses and build the final result. In the subscribe method, we
print the final result to the console or print the stack trace.

Let’s combine this with an HTTP server. When an HTTP request is
received, we invoke the hello service twice and return the built
result as a response:

@Override
public void start() {
  vertx.createHttpServer()
    .requestHandler(
      req -> {
        EventBus bus = vertx.eventBus();
        Single<JsonObject> obs1 = bus
          .<JsonObject>rxSend("hello", "Luke")
          .map(Message::body);
        Single<JsonObject> obs2 = bus
          .<JsonObject>rxSend("hello", "Leia")
          .map(Message::body);

        Single
          .zip(obs1, obs2, (luke, leia) ->
            new JsonObject()
              .put("Luke", luke.getString("message")
                + " from "
                + luke.getString("served-by"))
              .put("Leia", leia.getString("message")
                + " from "
                + leia.getString("served-by"))
          )
          .subscribe(
            x -> req.response().end(x.encodePrettily()),
            t -> {
              t.printStackTrace();
              req.response().setStatusCode(500)
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                .end(t.getMessage());
            }
          );
      })
    .listen(8082);
}

The last code just wraps the event bus interactions into a
requestHandler and deals with the HTTP response. In case of fail‐
ure, we return a JSON object containing an error message.

If you run this code with mvn compile vertx:run

-Dvertx.runArgs="-cluster -Djava.net.preferIPv4Stack=true"

and open your browser to http://localhost:8082, you should see
something like:

{
  "Luke" : "hello Luke from ...HelloMicroservice@39721ab",
  "Leia" : "hello Leia from ...HelloMicroservice@39721ab"
}

Are We Reactive Now?
The code is very close to the HTTP-based microservice we wrote
previously. The only difference is we used an event bus instead of
HTTP. Does this change our reactiveness? It does! Let’s see why.

Elasticity
Elasticity is one of the characteristics not enforced by the HTTP ver‐
sion of the microservice. Because the microservice was targeting a
specific instance of the microservice (using a hard-coded URL), it
didn’t provide the elasticity we need. But now that we are using mes‐
sages sent to an address, this changes the game. Let’s see how this
microservice system behaves.

Remember the output of the previous execution. The returned
JSON objects display the verticle having computed the hello mes‐
sage. The output always displays the same verticle. The message was
indicating the same instance. We expected this because we had a sin‐
gle instance running. Now let’s see what happens with two.

Stop the vertx:run execution of the Hello microservice and run:

mvn clean package
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Then, open two different terminals in the hello-microservice-
message directory and issue the following command (in each termi‐
nal):

java -jar target/hello-microservice-message-1.0-SNAPSHOT.jar \
    --cluster -Djava.net.preferIPv4Stack=true

This launches two instances of the Hello microservice. Go back to
your browser and refresh the page and you should see something
like:

{
  "Luke" : "hello Luke from ...HelloMicroservice@16d0d069",
  "Leia" : "hello Leia from ...HelloMicroservice@411fc4f"
}

The two instances of Hello are used. The Vert.x cluster connects the
different nodes, and the event bus is clustered. Thanks to the event
bus round-robin, the Vert.x event bus dispatches messages to the
available instances and thus balances the load among the different
nodes listening to the same address.

So, by using the event bus, we have the elasticity characteristic we
need.

Resilience
What about resilience? In the current code, if the hello microservice
failed, we would get a failure and execute this code:

t -> {
  t.printStackTrace();
  req.response().setStatusCode(500).end(t.getMessage());
}

Even though the user gets an error message, we don’t crash, we don’t
limit our scalability, and we can still handle requests. However, to
improve the user experience, we should always reply in a timely
fashion to the user, even if we don’t receive the responses from the
service. To implement this logic, we can enhance the code with a
timeout.

To illustrate this, let’s modify the Hello microservice to inject fail‐
ures and misbehaviors. This code is located in the microservices/
hello-microservice-faulty directory of the code repository.
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This new start method randomly selects one of three strategies: (1)
reply with an explicit failure, (2) forget to reply (leading to a timeout
on the consumer side), or (3) send the correct result.

@Override
public void start() {
    vertx.eventBus().<String>consumer("hello", message -> {
        double chaos = Math.random();
        JsonObject json = new JsonObject()
            .put("served-by", this.toString());

        if (chaos < 0.6) {
            // Normal behavior
            if (message.body().isEmpty()) {
                message.reply(json.put("message", "hello"));
            } else {
                message.reply(json.put("message", "hello "
                  + message.body()));
            }
        } else if (chaos < 0.9) {
            System.out.println("Returning a failure");
            // Reply with a failure
            message.fail(500,
              "message processing failure");
        } else {
            System.out.println("Not replying");
            // Just do not reply, leading to a timeout on the
            // consumer side.
        }
    });
}

Repackage and restart the two instances of the Hello microservice.

With this fault injection in place, we need to improve the fault-
tolerance of our consumer. Indeed, the consumer may get a timeout
or receive an explicit failure. In the hello consumer microservice,
change how we invoke the hello service to:

EventBus bus = vertx.eventBus();
Single<JsonObject> obs1 = bus
  .<JsonObject>rxSend("hello", "Luke")
  .subscribeOn(RxHelper.scheduler(vertx))
  .timeout(3, TimeUnit.SECONDS)
  .retry()
  .map(Message::body);
Single<JsonObject> obs2 = bus.
  <JsonObject>rxSend("hello", "Leia")
  .subscribeOn(RxHelper.scheduler(vertx))
  .timeout(3, TimeUnit.SECONDS)
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  .retry()
  .map(Message::body);

This code is located in the microservices/hello-consumer-

microservice-timeout directory of the code repository. The time
out method emits a failure if we don’t receive a response in the given
time. The retry method reattempts to retrieve the value if it gets a
failure in the form of a timeout or an explicit failure. The
subscribeOn method indicates on which thread the invocations
need to be done. We use the Vert.x event loop to call our callbacks.
Without this, the methods would be executed by a thread from the
default RxJava thread pool, breaking the Vert.x threading model.
The RXHelper class is provided by Vert.x. Blindly retrying service
invocations is not a very clever fault tolerance strategy. It can even
be harmful. The next chapter details different approaches.

Now you can reload the page. You will always get a result, even if
there are failures or timeouts. Remember that the thread is not
blocked while calling the service, so you can always accept new
requests and respond to them in a timely fashion. However, this
timeout retry often causes more harm than good, as we will see in
the next chapter.

Summary
In this section, we learned how to develop an HTTP microservice
with Vert.x and also how to consume it. As we learned, hard-coding
the URL of the consumed service in the code is not a brilliant idea as
it breaks one of the reactive characteristics. In the second part, we
replaced the HTTP interactions using messaging, which showed
how messaging and the Vert.x event bus help build reactive micro‐
services.

So, are we there yet? Yes and no. Yes, we know how to build reactive
microservices, but there are a couple of shortcomings we need to
look at. First, what if you only have HTTP services? How do you
avoid hard-coded locations? What about resilience? We have seen
timeouts and retries in this chapter, but what about circuit breakers,
failovers, and bulkheads? Let’s continue the journey.
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If you want to go further on these topics:

• Vert.x Web documentation
• Vert.x Web Client documentation
• Vert.x reactive microservices

Summary | 41

http://vertx.io/docs/vertx-web/java
http://vertx.io/docs/vertx-web-client/java
http://bit.ly/2nYLQkj




CHAPTER 4

Building Reactive Microservice
Systems

The previous chapter focused on building microservices, but this
chapter is all about building systems. Again, one microservice
doesn’t make a service—they come in systems. When you embrace
the microservice architectural style, you will have dozens of micro‐
services. Managing two microservices, as we did in the last chapter,
is easy. The more microservices you use, the more complex the
application becomes.

First, we will learn how service discovery can be used to address
location transparency and mobility. Then, we will discuss resilience
and stability patterns such as timeouts, circuit breakers, and fail-
overs.

Service Discovery
When you have a set of microservices, the first question you have to
answer is: how will these microservices locate each other? In order
to communicate with another peer, a microservice needs to know its
address. As we did in the previous chapter, we could hard-code the
address (event bus address, URLs, location details, etc.) in the code
or have it externalized into a configuration file. However, this solu‐
tion does not enable mobility. Your application will be quite rigid
and the different pieces won’t be able to move, which contradicts
what we try to achieve with microservices.
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Client- and Server-Side Service Discovery
Microservices need to be mobile but addressable. A consumer needs
to be able to communicate with a microservice without knowing its
exact location in advance, especially since this location may change
over time. Location transparency provides elasticity and dynamism:
the consumer may call different instances of the microservice using
a round-robin strategy, and between two invocations the microser‐
vice may have been moved or updated.

Location transparency can be addressed by a pattern called service
discovery. Each microservice should announce how it can be
invoked and its characteristics, including its location of course, but
also other metadata such as security policies or versions. These
announcements are stored in the service discovery infrastructure,
which is generally a service registry provided by the execution envi‐
ronment. A microservice can also decide to withdraw its service
from the registry. A microservice looking for another service can
also search this service registry to find matching services, select the
best one (using any kind of criteria), and start using it. These inter‐
actions are depicted in Figure 4-1.

Figure 4-1. Interactions with the service registry

Two types of patterns can be used to consume services. When using
client-side service discovery, the consumer service looks for a service
based on its name and metadata in the service registry, selects a
matching service, and uses it. The reference retrieved from the ser‐
vice registry contains a direct link to a microservice. As microservi‐
ces are dynamic entities, the service discovery infrastructure must not
only allow providers to publish their services and consumers to look
for services, but also provide information about the arrivals and
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departures of services. When using client-side service discovery, the
service registry can take various forms such as a distributed data
structure, a dedicated infrastructure such as Consul, or be stored in
an inventory service such as Apache Zookeeper or Redis.

Alternatively, you can use server-side service discovery and let a load
balancer, a router, a proxy, or an API gateway manage the discovery
for you (Figure 4-2). The consumer still looks for a service based on
its name and metadata but retrieves a virtual address. When the
consumer invokes the service, the request is routed to the actual
implementation. You would use this mechanism on Kubernetes or
when using AWS Elastic Load Balancer.

Figure 4-2. Server-side service discovery

Vert.x Service Discovery
Vert.x provides an extensible service discovery mechanism. You can
use client-side or server-side service discovery using the same API.
The Vert.x service discovery can import or export services from
many types of service discovery infrastructures such as Consul or
Kubernetes (Figure 4-3). It can also be used without any dedicated
service discovery infrastructure. In this case, it uses a distributed
data structure shared on the Vert.x cluster.
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Figure 4-3. Import and export of services from and to other service dis‐
covery mechanisms

You can retrieve services by types to get a configured service client
ready to be used. A service type can be an HTTP endpoint, an event
bus address, a data source, and so on. For example, if you want to
retrieve the HTTP endpoint named hello that we implemented in
the previous chapter, you would write the following code:

// We create an instance of service discovery
ServiceDiscovery discovery = ServiceDiscovery.create(vertx);
// As we know we want to use an HTTP microservice, we can
// retrieve a WebClient already configured for the service
HttpEndpoint
  .rxGetWebClient(discovery,
    // This method is a filter to select the service
    rec -> rec.getName().endsWith("hello")
  )
  .flatMap(client ->
    // We have retrieved the WebClient, use it to call
    // the service
    client.get("/").as(BodyCodec.string()).rxSend())
  .subscribe(response -> System.out.println(response.body()));

The retrieved WebClient is configured with the service location,
which means you can immediately use it to call the service. If your
environment is using client-side discovery, the configured URL tar‐
gets a specific instance of the service. If you are using server-side
discovery, the client uses a virtual URL.

Depending on your runtime infrastructure, you may have to register
your service. But when using server-side service discovery, you usu‐
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ally don’t have to do this since you declare your service when it is
deployed. Otherwise, you need to publish your service explicitly. To
publish a service, you need to create a Record containing the service
name, location, and metadata:

// We create the service discovery object
ServiceDiscovery discovery = ServiceDiscovery.create(vertx);
vertx.createHttpServer()
  .requestHandler(req -> req.response().end("hello"))
  .rxListen(8083)
  .flatMap(
    // Once the HTTP server is started (we are ready to serve)
    // we publish the service.
    server -> {
      // We create a record describing the service and its
      // location (for HTTP endpoint)
      Record record = HttpEndpoint.createRecord(
        "hello",              // the name of the service
        "localhost",          // the host
        server.actualPort(),  // the port
        "/"                   // the root of the endpoint
      );
      // We publish the service
      return discovery.rxPublish(record);
    }
  )
  .subscribe(rec -> System.out.println("Service published"));

Service discovery is a key component in a microservice infrastruc‐
ture. It enables dynamism, location transparency, and mobility.
When dealing with a small set of services, service discovery may
look cumbersome, but it’s a must-have when your system grows.
The Vert.x service discovery provides you with a unique API regard‐
less of the infrastructure and the type of service discovery you use.
However, when your system grows, there is also another variable
that grows exponentially—failures.

Stability and Resilience Patterns
When dealing with distributed systems, failures are first-class citi‐
zens and you have to live with them. Your microservices must be
aware that the services they invoke can fail for many reasons. Every
interaction between microservices will eventually fail in some way,
and you need to be prepared for that failure. Failure can take differ‐
ent forms, ranging from various network errors to semantic errors.
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Managing Failures in Reactive Microservices
Reactive microservices are responsible for managing failures locally.
They must avoid propagating the failure to another microservice. In
other words, you should not delegate the hot potato to another
microservice. Therefore, the code of a reactive microservice consid‐
ers failures as first-class citizens.

The Vert.x development model makes failures a central entity. When
using the callback development model, the Handlers often receive
an AsyncResult as a parameter. This structure encapsulates the
result of an asynchronous operation. In the case of success, you can
retrieve the result. On failure, it contains a Throwable describing the
failure:

client.get("/").as(BodyCodec.jsonObject())
    .send(ar -> {
        if (ar.failed()) {
            Throwable cause = ar.cause();
            // You need to manage the failure.
        } else {
            // It's a success
            JsonObject json = ar.result().body();
        }
    });

When using the RxJava APIs, the failure management can be made
in the subscribe method:

client.get("/").as(BodyCodec.jsonObject())
    .rxSend()
    .map(HttpResponse::body)
    .subscribe(
        json -> { /* success */ },
        err -> { /* failure */ }
    );

If a failure is produced in one of the observed streams, the error
handler is called. You can also handle the failure earlier, avoiding the
error handler in the subscribe method:

client.get("/").as(BodyCodec.jsonObject())
    .rxSend()
    .map(HttpResponse::body)
    .onErrorReturn(t -> {
        // Called if rxSend produces a failure
        // We can return a default value
        return new JsonObject();
    })
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    .subscribe(
        json -> {
            // Always called, either with the actual result
            // or with the default value.
        }
    );

Managing errors is not fun but it has to be done. The code of a reac‐
tive microservice is responsible for making an adequate decision
when facing a failure. It also needs to be prepared to see its requests
to other microservices fail.

Using Timeouts
When dealing with distributed interactions, we often use timeouts.
A timeout is a simple mechanism that allows you to stop waiting for
a response once you think it will not come. Well-placed timeouts
provide failure isolation, ensuring the failure is limited to the micro‐
service it affects and allowing you to handle the timeout and con‐
tinue your execution in a degraded mode.

client.get(path)
  .rxSend() // Invoke the service
  // We need to be sure to use the Vert.x event loop
  .subscribeOn(RxHelper.scheduler(vertx))
  // Configure the timeout, if no response, it publishes
  // a failure in the Observable
  .timeout(5, TimeUnit.SECONDS)
  // In case of success, extract the body
  .map(HttpResponse::bodyAsJsonObject)
  // Otherwise use a fallback result
  .onErrorReturn(t -> {
    // timeout or another exception
    return new JsonObject().put("message", "D'oh! Timeout");
  })
  .subscribe(
    json -> {
      System.out.println(json.encode());
    }
  );

Timeouts are often used together with retries. When a timeout
occurs, we can try again. Immediately retrying an operation after a
failure has a number of effects, but only some of them are beneficial.
If the operation failed because of a significant problem in the called
microservice, it is likely to fail again if retried immediately. How‐
ever, some kinds of transient failures can be overcome with a retry,
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especially network failures such as dropped messages. You can
decide whether or not to reattempt the operation as follows:

client.get(path)
  .rxSend()
  .subscribeOn(RxHelper.scheduler(vertx))
  .timeout(5, TimeUnit.SECONDS)
  // Configure the number of retries
  // here we retry only once.
  .retry(1)
  .map(HttpResponse::bodyAsJsonObject)
  .onErrorReturn(t -> {
    return new JsonObject().put("message", "D'oh! Timeout");
  })
  .subscribe(
    json -> System.out.println(json.encode())
  );

It’s also important to remember that a timeout does not imply an
operation failure. In a distributed system, there are many reasons for
failure. Let’s look at an example. You have two microservices, A and
B. A is sending a request to B, but the response does not come in
time and A gets a timeout. In this scenario, three types of failure
could have occurred:

1. The message between A and B has been lost—the operation is
not executed.

2. The operation in B failed—the operation has not completed its
execution.

3. The response message between B and A has been lost—the
operation has been executed successfully, but A didn’t get the
response.

This last case is often ignored and can be harmful. In this case, com‐
bining the timeout with a retry can break the integrity of the system.
Retries can only be used with idempotent operations, i.e., with oper‐
ations you can invoke multiple times without changing the result
beyond the initial call. Before using a retry, always check that your
system is able to handle reattempted operations gracefully.

Retry also makes the consumer wait even longer to get a response,
which is not a good thing either. It is often better to return a fallback
than to retry an operation too many times. In addition, continually
hammering a failing service may not help it get back on track. These
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two concerns are managed by another resilience pattern: the circuit
breaker.

Circuit Breakers
A circuit breaker is a pattern used to deal with repetitive failures. It
protects a microservice from calling a failing service again and
again. A circuit breaker is a three-state automaton that manages an
interaction (Figure 4-4). It starts in a closed state in which the circuit
breaker executes operations as usual. If the interaction succeeds,
nothing happens. If it fails, however, the circuit breaker makes a
note of the failure. Once the number of failures (or frequency of fail‐
ures, in more sophisticated cases) exceeds a threshold, the circuit
breaker switches to an open state. In this state, calls to the circuit
breaker fail immediately without any attempt to execute the under‐
lying interaction. Instead of executing the operation, the circuit
breaker may execute a fallback, providing a default result. After a
configured amount of time, the circuit breaker decides that the
operation has a chance of succeeding, so it goes into a half-open
state. In this state, the next call to the circuit breaker executes the
underlying interaction. Depending on the outcome of this call, the
circuit breaker resets and returns to the closed state, or returns to the
open state until another timeout elapses.

Figure 4-4. Circuit breaker states

The most well-known circuit breaker implementation in Java is Hys‐
trix (https://github.com/Netflix/Hystrix). While you can use Hystrix
in a Vert.x microservice (it uses a thread pool), you need to explic‐
itly switch to the Vert.x event loop to execute the different callbacks.
Alternatively, you can use the Vert.x circuit breaker built for asyn‐
chronous operations and enforce the Vert.x nonblocking asynchro‐
nous development model.
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Let’s imagine a failing hello microservice. The consumer should pro‐
tect the interactions with this service and use a circuit breaker as fol‐
lows:

CircuitBreaker circuit = CircuitBreaker.create("my-circuit",
    vertx, new CircuitBreakerOptions()
        .setFallbackOnFailure(true) // Call the fallback
                                    // on failures
        .setTimeout(2000)           // Set the operation timeout
        .setMaxFailures(5)          // Number of failures before
                                    // switching to
                                    // the 'open' state
        .setResetTimeout(5000)      // Time before attempting
                                    // to reset
                                    // the circuit breaker
);
// ...
circuit.rxExecuteCommandWithFallback(
    future ->
        client.get(path)
            .rxSend()
            .map(HttpResponse::bodyAsJsonObject)
            .subscribe(future::complete, future::fail),
    t -> new JsonObject().put("message", "D'oh! Fallback")
).subscribe(
        json -> {
            // Get the actual json or the fallback value
            System.out.println(json.encode());
        }
);

In this code, the HTTP interaction is protected by the circuit
breaker. When the number of failures reaches the configured thres‐
hold, the circuit breaker will stop calling the microservice and
instead call a fallback. Periodically, the circuit breaker will let one
invocation pass through to check whether the microservice is back
on track and act accordingly. This example uses a web client, but any
interaction can be managed with a circuit breaker and protect you
against flaky services, exceptions, and other sorts of failures.

A circuit breaker switching to an open state needs to be monitored
by your operations team. Both Hystrix and the Vert.x circuit breaker
have monitoring capabilities.
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Health Checks and Failovers
While timeouts and circuit breakers allow consumers to deal with
failures on their side, what about crashes? When facing a crash, a
failover strategy restarts the parts of the system that have failed. But
before being able to achieve this, we must be able to detect when a
microservice has died.

A health check is an API provided by a microservice indicating its
state. It tells the caller whether or not the service is healthy. The
invocation often uses HTTP interactions but is not necessary. After
invocation, a set of checks is executed and the global state is compu‐
ted and returned. When a microservice is detected to be unhealthy,
it should not be called anymore, as the outcome is probably going to
be a failure. Note that calling a healthy microservice does not guar‐
antee a success either. A health check merely indicates that the
microservice is running, not that it will accurately handle your
request or that the network will deliver its answer.

Depending on your environment, you may have different levels of
health checks. For instance, you may have a readiness check used at
deployment time to determine when the microservice is ready to
serve requests (when everything has been initialized correctly). Liv‐
eness checks are used to detect misbehaviors and indicate whether
the microservice is able to handle requests successfully. When a liv‐
eness check cannot be executed because the targeted microservice
does not respond, the microservice has probably crashed.

In a Vert.x application, there are several ways to implement health
checks. You can simply implement a route returning the state, or
even use a real request. You can also use the Vert.x health check
module to implement several health checks in your application and
compose the different outcomes. The following code gives an exam‐
ple of an application providing two levels of health checks:

Router router = Router.router(vertx);
HealthCheckHandler hch = HealthCheckHandler.create(vertx);
// A procedure to check if we can get a database connection
hch.register("db-connection", future -> {
  client.rxGetConnection()
    .subscribe(c -> {
        future.complete();
        c.close();
      },
      future::fail
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    );
});
// A second (business) procedure
hch.register("business-check", future -> {
  // ...
});
// Map /health to the health check handler
router.get("/health").handler(hch);
// ...

After you have completed health checks, you can implement a fail-
over strategy. Generally, the strategy just restarts the dead part of the
system, hoping for the best. While failover is often provided by your
runtime infrastructure, Vert.x offers a built-in failover, which is trig‐
gered when a node from the cluster dies. With the built-in Vert.x
failover, you don’t need a custom health check as the Vert.x cluster
pings nodes periodically. When Vert.x loses track of a node, Vert.x
chooses a healthy node of the cluster and redeploys the dead part.

Failover keeps your system running but won’t fix the root cause—
that’s your job. When an application dies unexpectedly, a postmor‐
tem analysis should be done.

Summary
This chapter has addressed several concerns you will face when your
microservice system grows. As we learned, service discovery is a
must-have in any microservice system to ensure location transpar‐
ency. Then, because failures are inevitable, we discussed a couple of
patterns to improve the resilience and stability of your system.

Vert.x includes a pluggable service discovery infrastructure that can
handle client-side service discovery and server-side service discov‐
ery using the same API. The Vert.x service discovery is also able to
import and export services from and to different service discovery
infrastructures. Vert.x includes a set of resilience patterns such as
timeout, circuit breaker, and failover. We saw different examples of
these patterns. Dealing with failure is, unfortunately, part of the job
and we all have to do it.

In the next chapter, we will learn how to deploy Vert.x reactive
microservices on OpenShift and illustrate how service discovery,
circuit breakers, and failover can be used to make your system
almost bulletproof. While these topics are particularly important,
don’t underestimate the other concerns that need to be handled
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when dealing with microservices, such as security, deployment,
aggregated logging, testing, etc.

If you want to learn more about these topics, check the following
resources:

• Reactive Microservices Architecture
• The Vert.x service discovery documentation
• Release It! Design and Deploy Production-Ready Software

(O’Reilly) A book providing a list of recipes to make your sys‐
tem ready for production

• Netflix Hystrix
• The Vert.x service circuit breaker documentation
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CHAPTER 5

Deploying Reactive Microservices
in OpenShift

So far, we have only deployed our microservices on a local machine.
What happens when we deploy a microservice on the cloud? Most
cloud platforms include services to make your deployment and
operations easier. The ability to scale up and down and load balance
are some of the commonly found features that are particularly rele‐
vant to developing reactive microservices. In this chapter, we will see
how these features (and others) can be used to develop and deploy
reactive microservices.

To illustrate these benefits, we will use OpenShift (https://www.open
shift.org/). However, most modern cloud platforms include the fea‐
tures we use here. By the end of this chapter, you will see how the
cloud makes reactiveness easy for everyone.

What Is OpenShift?
RedHat OpenShift v3 is an open source container platform. With
OpenShift you deploy applications running in containers, which
makes their construction and administration easy. OpenShift is built
on top of Kubernetes (https://kubernetes.io/).

Kubernetes (in blue in Figure 5-1) is a project with lots of function‐
ality for running clusters of microservices inside Linux containers at
scale. Google has packaged over a decade of experience with con‐
tainers into Kubernetes. OpenShift is built on top of this experience
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and extends it with build and deployment automation (in green in
Figure 5-1). Use cases such as rolling updates, canary deployments,
and continuous delivery pipelines are provided out of the box.

Figure 5-1. The OpenShift container platform

OpenShift has a handful of simple entities, as depicted in Figure 5-2,
that we need to understand before putting it to work.
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Figure 5-2. The OpenShift entities

Build Configuration
The build is the process of creating container images that will be
used by OpenShift to instantiate the different containers that make
up an application. OpenShift builds can use different strategies:

• Docker—Build an image from a Dockerfile
• Source to Image (S2I)—Build an image from the application

source, built on OpenShift by a builder image
• Jenkins Pipeline—Build an image using a Jenkins pipeline

(https://jenkins.io/doc/book/pipeline) potentially containing mul‐
tiple stages such as build, tests, and deployment

A build configuration can be triggered automatically by a git push, a
change in the configuration or an update in a dependent image, and,
obviously, manually.

Deployment Configurations
A deployment configuration defines the instantiation of the image
produced by a build. It defines which image is used to create the
containers and the number of instances we need to keep alive. It also
describes when a deployment should be triggered. A deployment
also acts as a replication controller and is responsible for keeping
containers alive. To achieve this, you pass the number of desired
instances. The number of desired instances can be adjusted over
time or based on the load fluctuation (auto-scaling). The deployment
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can also specify health checks to manage rolling updates and detect
dead containers.

Pods
A pod is a group of one or more containers. However, it is typically
comprised of a single container. The pod orchestration, scheduling,
and management are delegated to Kubernetes. Pods are fungible,
and can be replaced at any time by another instance. For example, if
the container crashes, another instance will be spawned.

Services and Routes
Because pods are dynamic entities (the number of instances can
change over time), we cannot rely on their direct IP addresses (each
pod has its own IP address). Services allow us to communicate with
the pods without relying on their addresses but by using the service
virtual address. A service acts as a proxy in front of a group of pods.
It may also implement a load-balancing strategy.

Other applications running in OpenShift can access the functional‐
ity offered by the pods using the service, but external applications
need a route. A route exposes a service at a hostname like
www.myservice.com so that external clients can reach it by name.

Installing OpenShift on Your Machine
That’s enough abstract concepts. Now it’s time for action. We are
going to install Openshift on your machine using Minishift (https://
github.com/minishift/minishift). Alternatively, you can use Open‐
Shift Online (https://www.openshift.com/devpreview/) or the Red
Hat Container Development Kit v3 (https://developers.redhat.com/
products/cdk/download/).

Installing Minishift (https://github.com/minishift/minishift#installa
tion) requires a hypervisor to run the virtual machine containing
OpenShift. Depending on your host OS, you have a choice of hyper‐
visors; check the Minishift installation guide for details.

To install Minishift, just download the latest archive for your OS
from the Minishift releases page (https://github.com/minishift/minis
hift/releases), unpack it to your preferred location, and add the
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minishift binary to your PATH environment variable. Once
installed, start Minishift using:

minishift start

Once started, you should be able to connect to your OpenShift
instance on https://192.168.64.12:8443. You may have to validate the
SSL certificate. Log in with developer/developer.

We also need the OpenShift client (oc), a command-line utility used
to interact with your OpenShift instance. Download the latest ver‐
sion of the OpenShift client from https://github.com/openshift/
origin/releases/latest. Unpack it to your preferred location and add
the oc binary to your PATH environment variable.

Then, connect to your OpenShift instance using:

oc login https://192.168.64.12:8443 -u developer -p developer

OpenShift has a namespace concept called project. To create projects
for the examples we are going to deploy, execute:

oc new-project reactive-microservices
oc policy add-role-to-user admin developer -n
 reactive-microservices
oc policy add-role-to-user view -n reactive-microservices
 -z default

In your browser, open https://192.168.64.12:8443/console/project/
reactive-microservices/. You should be able to see the project, which
is not very interesting at the moment as we haven’t deployed any‐
thing (Figure 5-3).

Figure 5-3. The created project
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Deploying a Microservice in OpenShift
It’s time to deploy a microservice to OpenShift. The code we are
going to deploy is contained in the openshift/hello-

microservice-openshift directory of the code repository. The ver‐
ticle is very close to the hello microservice (HTTP) we developed
earlier:

package io.vertx.book.openshift;

import io.vertx.core.AbstractVerticle;
import io.vertx.core.http.HttpHeaders;
import io.vertx.core.json.JsonObject;
import io.vertx.ext.web.*;

public class HelloHttpVerticle extends AbstractVerticle {

  static final String HOSTNAME = System.getenv("HOSTNAME");

  @Override
  public void start() {
    Router router = Router.router(vertx);
    router.get("/").handler(this::hello);
    router.get("/:name").handler(this::hello);
    vertx.createHttpServer()
      .requestHandler(router::accept)
      .listen(8080);
  }

  private void hello(RoutingContext rc) {
    String message = "hello";
    if (rc.pathParam("name") != null) {
      message += " " + rc.pathParam("name");
    }
    JsonObject json = new JsonObject()
      .put("message", message)
      .put("served-by", HOSTNAME);
    rc.response()
      .putHeader(HttpHeaders.CONTENT_TYPE, "application/json")
      .end(json.encode());
  }
}

This code does not rely on specific OpenShift APIs or constructs. It’s
your application as you would have developed it on your machine.
The separation of Java code from deployment choices must be a
deliberate design choice to make the code runnable on any cloud
platform.
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We could create all the OpenShift entities manually, but let’s use the
Maven plug-in (https://maven.fabric8.io/) provided by Fabric8, an
end-to-end development platform for Kubernetes. If you open the
pom.xml file, you will see that this plug-in is configured in the open
shift profile and collaborates with the Vert.x Maven plug-in to cre‐
ate the OpenShift entities.

To package and deploy our microservice to OpenShift, launch:

mvn fabric8:deploy -Popenshift

This command interacts with your OpenShift instance (on which
you have logged in with oc) to create a build (using the source to
image build strategy) and trigger it. This first build can take some
time as it needs to retrieve the builder image. Don’t worry—once
everything is cached, the builds will be created faster. The output of
the build (and image) is used by the deployment configuration, which
is also created by the Fabric8 Maven plug-in. By default, it creates
one pod. A service is also created by the plug-in. You can find all this
information in the OpenShift dashboard, as shown in Figure 5-4.

Figure 5-4. Entities created during our first deployment

Routes are not created by default by the Fabric8 Maven plug-in.
However, we created one from its description (src/main/fabric8/
route.yml). If you open your browser to http://hello-microservice-
reactive-microservices.192.168.64.12.nip.io/Luke, you should see
something like:

{"message":"hello Luke","served-by":
 "hello-microservice-1-9r8uv"}
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hello-microservice-1-9r8uv is the name of the pod serving the
request.

Service Discovery
Now that we have the hello microservice deployed, let’s consume it
from another microservice. The code we are going to deploy in this
section is contained in the openshift/hello-microservice-

consumer-openshift directory from the code repository.

To consume a microservice, we first have to find it. OpenShift pro‐
vides a service discovery mechanism. Service lookup can be done
using environment variables, DNS, or the Vert.x service discovery,
which we use here. The project pom.xml is configured to import the
Vert.x service discovery, the Kubernetes service importer, and a
server-side service discovery. You don’t have to explicitly register the
service on the provider side as the Fabric8 Maven plug-in declares a
service for us. Our consumer is going to retrieve this OpenShift ser‐
vice and not the pods.

@Override
public void start() {
  Router router = Router.router(vertx);
  router.get("/").handler(this::invokeHelloMicroservice);
  // Create the service discovery instance
  ServiceDiscovery.create(vertx, discovery -> {
    // Look for an HTTP endpoint named "hello-microservice"
    // you can also filter on 'label'
    Single<WebClient> single = HttpEndpoint.rxGetWebClient
      (discovery, rec -> rec.getName().equals
       ("hello-microservice"),
      new JsonObject().put("keepAlive", false));
    single.subscribe(
      client -> {
        // the configured client to call the microservice
        this.hello = client;
        vertx.createHttpServer()
          .requestHandler(router::accept)
          .listen(8080);
      },
      err -> System.out.println("Oh no, no service")
    );
  });
}

In the start method, we use the service discovery to find the hello
microservice. Then, if the service is available, we start the HTTP
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server and keep a reference on the retrieved WebClient. We also
pass a configuration to the WebClient and disable the keep-alive
settings (we will see the reason for this in a few minutes). In the
invokeHelloMicroservice, we don’t have to pass the port and host
to the rxSend method (as we did previously). Indeed, the WebClient
is configured to target the hello service:

HttpRequest<JsonObject> request1 = hello.get("/Luke")
  .as(BodyCodec.jsonObject());
HttpRequest<JsonObject> request2 = hello.get("/Leia")
  .as(BodyCodec.jsonObject());
Single<JsonObject> s1 = request1.rxSend()
  .map(HttpResponse::body);
Single<JsonObject> s2 = request2.rxSend()
  .map(HttpResponse::body);
  // ...

In a terminal, navigate to the openshift/hello-microservice-
consumer-openshift directory to build and deploy this consumer
with:

mvn fabric8:deploy -Popenshift

In the OpenShift dashboard, you should see a second service and
route (http://bit.ly/2o4xaSk). If you open the route associated with
the hello-consumer service (http://bit.ly/2p2aHTK), you should see:

{
  "luke" : "hello Luke hello-microservice-1-sa5pf",
  "leia" : "hello Leia hello-microservice-1-sa5pf"
}

You may see a 503 error page, since the pod has not yet started. Just
refresh until you get the right page. So far, nothing surprising. The
displayed served-by values are always indicating the same pod (as
we have only one).

Scale Up and Down
If we are using a cloud platform, it’s mainly for scalability reasons.
We want to be able to increase and decrease the number of instances
of our application depending on the load. In the OpenShift dash‐
board we can scale the number of pods up and down, as shown in
Figure 5-5.
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Figure 5-5. Scale up and down

You can also set the number of replicas using the oc command line:

# scale up to 2 replicas
oc scale --replicas=2 dc hello-microservice

# scale down to 0
oc scale --replicas=0 dc hello-microservice

Let’s create a second instance of our hello microservice. Then, wait
until the second microservice has started correctly (the wait time is
annoying, but we will fix that later), and go back to the hello-
consumer page in a browser. You should see something like:

{
  "luke" : "hello Luke hello-microservice-1-h6bs6",
  "leia" : "hello Leia hello-microservice-1-keq8s"
}

If you refresh several times, you will see that the OpenShift service
balances the load between the two instances. Do you remember the
keep-alive settings we disabled? When the HTTP connection uses
a keep-alive connection, OpenShift forwards the request to the
same pod, providing connection affinity. Note that in practice,
keep-alive is a very desirable header as it allows reusing connec‐
tions.

In the previous scenario there is a small issue. When we scale up,
OpenShift starts dispatching requests to the new pod without check‐
ing whether the application is ready to serve these requests. So, our
consumer may call a microservice that is not ready and get a failure.
There are a couple of ways to address this:

1. Using health checks in the microservice
2. Be prepared to face the failure in the consumer code
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Health Check and Failover
In OpenShift you can declare two types of checks. Readiness checks
are used to avoid downtime when updating a microservice. In a roll‐
ing update, OpenShift waits until the new version is ready before
shutting down the previous version. It pings the readiness check
endpoint of the new microservice until it is ready, and verifies that
the microservice has been successfully initialized. Liveness checks
are used to determine whether a pod is alive. OpenShift invokes the
liveness check endpoint periodically. If a pod does not reply posi‐
tively to the check, it will be restarted. A liveness check focuses on
the critical resources required by the microservice to behave cor‐
rectly. In the following example we will use the same endpoint for
both checks. However, it’s best to use two different endpoints.

The code of this example is contained in the openshift/hello-
microservice-openshift-health-checks directory. If you open
the verticle, you will see the HealthCheck handler verifying whether
or not the HTTP server has been started:

private boolean started;

@Override
public void start() {
  Router router = Router.router(vertx);
  router.get("/health").handler(
    HealthCheckHandler.create(vertx)
      .register("http-server-running",
        future -> future.complete(
          started ? Status.OK() : Status.KO())));
  router.get("/").handler(this::hello);
  router.get("/:name").handler(this::hello);
  vertx.createHttpServer()
    .requestHandler(router::accept)
    .listen(8080, ar -> started = ar.succeeded());
}

The Fabric8 Maven plug-in is configured to use /health for the
readiness and liveness health checks. Once this version of the hello
microservice is deployed, all subsequent deployments will use the
readiness check to avoid downtime, as shown in Figure 5-6.
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Figure 5-6. Rolling updates

When the pod is ready, OpenShift routes the requests to this pod
and shuts down the old one. When we scale up, OpenShift doesn’t
route requests to a pod that is not ready.

Using a Circuit Breaker
While using health checks avoids calling a microservice that is not
ready and restarts dead ones, we still need to protect ourselves from
other failures such as timeouts, network outage, bugs in the called
microservice, and so on. In this section we are going to protect the
hello consumer using a circuit breaker. The code of this section is
located in the openshift/hello-microservice-consumer-

openshift-circuit-breaker directory.

In the verticle, we are using a single circuit breaker to protect
against the two calls to the hello microservice. The following code
uses this design; however, it’s just one among a large set of possible
approaches, such as using one circuit breaker per call, using a single
circuit breaker but protecting the two calls independently, etc.:

private void invokeHelloMicroservice(RoutingContext rc) {
  circuit.rxExecuteCommandWithFallback(
    future -> {
      HttpRequest<JsonObject> request1 = hello.get("/Luke")
        .as(BodyCodec.jsonObject());
      HttpRequest<JsonObject> request2 = hello.get("/Leia")
        .as(BodyCodec.jsonObject());
      Single<JsonObject> s1 = request1
        .rxSend().map(HttpResponse::body);
      Single<JsonObject> s2 = request2
        .rxSend().map(HttpResponse::body);
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      Single
        .zip(s1, s2, (luke, leia) -> {
          // We have the result of both request in Luke and Leia
          return new JsonObject()
            .put("Luke", luke.getString("message")
              + " " + luke.getString("served-by"))
            .put("Leia", leia.getString("message")
              + " " + leia.getString("served-by"));
        })
        .subscribe(future::complete, future::fail);
    },
    error -> new JsonObject().put("message", "hello (fallback, "
      + circuit.state().toString() + ")")
  ).subscribe(
    x -> rc.response().end(x.encodePrettily()),
    t -> rc.response().end(t.getMessage()));
}

In case of error, we provide a fallback message indicating the state of
the circuit breaker. This will help us understand what’s going on.
Deploy this project using:

mvn fabric8:deploy -Popenshift

Now let’s scale down the hello microservice to 0. To do this, we can
click on the down arrow near the pod, or run:

oc scale --replicas=0 dc hello-microservice

Now if you refresh the consumer page (http://hello-consumer-
reactive-microservices.192.168.64.12.nip.io/), you should see the fall‐
back message. The first three requests show:

{
  "message" : "hello (fallback, CLOSED)"
}

Once the number of failures is reached, it returns:

{
  "message" : "hello (fallback, OPEN)"
}

If you restore the number of replicas to 1 with:

oc scale --replicas=1 dc hello-microservice

you should get back the normal output once the microservice is
ready.
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But Wait, Are We Reactive?
Yes, we are. Let’s see why.

All our interactions are asynchronous. They use asynchronous and
nonblocking HTTP requests and responses. In addition, thanks to
the OpenShift service, we are sending the requests to a virtual
address, which enables elasticity. The service balances the load
among a set of pods. We can easily scale up and down by adjusting
the number of pods or by using auto-scaling. We are also resilient.
Thanks to the health checks, we have a failover mechanism ensuring
we always have the right number of pods running. On the consumer
side, we can use various resilience patterns such as timeouts, retries,
or circuit breakers to protect the microservice from failures. So our
system is able to handle requests in a timely fashion under load and
when facing failures: we are responsive!

Can any system using asynchronous nonblocking HTTP be a reac‐
tive system in a cloud providing load-balancing and some resilience
features? Yes, but don’t forget the costs. Vert.x uses an event loop to
handle a high level of concurrency with a minimum of threads,
exhibiting a cloud native nature. When using approaches relying on
thread pools, you will need to 1) tune the thread pool to find the
right size; 2) handle the concurrency in your code, which means
debugging deadlocks, race conditions, and bottlenecks; and 3) mon‐
itor performance. Cloud environments are based on virtualization,
and thread scheduling can become a major issue when you have
many threads.

There are many nonblocking technologies, but not all of them use
the same execution model to handle the asynchronous nature We
can classify these technologies in three categories:

1. Approaches using a thread pool in the background—Then you
are facing a tuning, scheduling, and concurrency challenge
shifting the burden to ops.

2. Approaches using another thread for callbacks—You still need
to manage the thread-safety of your code while avoiding dead‐
locks and bottlenecks.

3. Approaches, such as Vert.x, using the same thread—You use a
small number of threads and are freed from debugging dead‐
locks.
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Could we use messaging systems in the cloud to implement reactive
microservice systems? Of course. We could have used the Vert.x
event bus to build our reactive microservice in OpenShift. But it
would not have demonstrated service virtual address and load-
balancing provided by OpenShift as it would have been handled by
Vert.x itself. Here we decided to go with HTTP, one design among
an infinite number of choices. Shape your system the way you want
it!

Summary
In this chapter, we deployed microservices in OpenShift and saw
how Vert.x and the OpenShift features are combined to build reac‐
tive microservices. Combining asynchronous HTTP servers and cli‐
ents, OpenShift services, load-balancing, failover and consumer-side
resilience gives us the characteristics of a reactive system.

This report focuses on reactive. However, when building a microser‐
vice system, lots of other concerns need to be managed such as secu‐
rity, configuration, logging, etc. Most cloud platforms, including
OpenShift, provide services to handle these concerns.

If you want to learn more about these topics, check out the follow‐
ing resources:

• OpenShift website
• OpenShift core concepts
• Kubernetes website
• OpenShift health checks documentation
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CHAPTER 6

Conclusion

We are at the end of our journey together, but you have many new
avenues to explore. We have covered a lot of content in this small
report but certainly didn’t cover everything! We have just scratched
the surface. There are more things to consider when moving toward
reactive microservices. Vert.x is also not limited to microservices
and can handle a large set of different use cases.

What Have We Learned?
So, what did you learn in this report? First, we started with micro‐
services and what are reactive microservices. We learned that reac‐
tive microservices are the building blocks of responsive microservice
systems. We also saw how reactive programming helps to build these
microservices.

We discovered Eclipse Vert.x, a toolkit used to build reactive micro‐
services (among many other things). Vert.x provides the perfect
paradigm to embrace microservices: asynchronous, failures as first-
class citizens, and nonblocking. To tame the asynchronous develop‐
ment model, Vert.x combines its power with RxJava. Our discovery
started with HTTP microservices and how to consume them. While
HTTP is often used in microservices, we also saw one of its limita‐
tions when we directly referenced an instance of a microservice. To
address this, we used the Vert.x event bus and saw how message-
based microservices let you build reactive microservices and thus
reactive systems.
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Of course, one microservice does not make an application. They
come in systems. To build systems, we have to use service discovery.
Service discovery enables location transparency and mobility, two
important characteristics in microservice systems. We also covered
resilience patterns, since microservice systems are distributed sys‐
tems and you need to be prepared for failure.

In the last chapter, we deployed our microservices on top of Open‐
Shift, an open source container platform based on Kubernetes. The
combination of Vert.x and OpenShift simplifies the deployment and
execution of reactive microservices and keeps the whole system on
track.

So, is this the end? No! It’s only the end of the first stage.

Microservices Aren’t Easy
Microservices are expected to improve overall agility. This improve‐
ment is not only a technical issue, it’s also an organization issue. If
your organization does not embrace microservices from an organi‐
zation standpoint, no technologies will help you.

While building microservices may seem simple, there’s actually a lot
more to it. Microservice systems are distributed systems, and thus
involve distributed computing laws. Failures are also inevitable.
Each microservice should own its data, and you will typically need
several persistence technologies.

To build microservice systems, there are a couple of topics to study
further. First, to enable the promised agility, you are going to deploy
the different microservices much more often. Therefore, continuous
delivery is key. You also need to automate the release and deploy‐
ment of your microservices as much as possible. Don’t forget that
your microservices are fungible, and immutable image delivery is a
must-have feature in order to scale.

However, if our deployed microservices are immutable, how do we
pass in configuration information and potentially reconfigure them?
For instance, how do we change the log level, configure the database
location and credentials, toggle features, and so on? Configuration is
a very important part of distributed systems and is difficult with
microservices. All systems are different and there is no silver bullet,
but there is a wide range of solutions, from environment variables to
Git repositories and dedicated configuration servers. Cloud plat‐
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forms also provide configuration abilities. To mitigate this diversity,
Vert.x is capable of retrieving configurations from almost anywhere.

Once you deploy and configure your microservices, you need to
keep your system on track. Logging, metrics, and tracing are impor‐
tant concerns to keep in mind when designing and developing a
microservice system. You have to retrieve the logged messages, the
measures, and the traces from your microservices to aggregate them
in a centralized way to enable correlation and visualization. While
logging and monitoring are generally well understood, distributed
tracing is often ignored. However, traces are priceless in microservi‐
ces because they will help you identify bottlenecks, the affinity
between microservices, and give you a good idea of the responsive‐
ness of your system.

The Evolution of the Microservice Paradigm
Microservices are dynamic and always evolving. Recently, the server‐
less trend, also called function as a service, is gaining a lot of attrac‐
tion. In this new paradigm, your unit of deployment is a function.
These functions receive and process messages. The serverless para‐
digm stresses the deployment, logging, and tracing facilities, but
promotes a simple development model and improves the scalability
of the system as you can instantiate as many instances of functions
as you need to handle the load.

HTTP/2 is also making a remarkable entrance in the microservice
world. It improves the performance and scalability of HTTP 1.1 and
allows multiplexing several requests over a single TCP connection.
It also offers bidirectional communication. gRPC is a remote proce‐
dure call (RPC) framework relying on HTTP/2 and provides high-
performance, multilanguage, secure, bidirectional interactions. It
can efficiently connect services in and across data centers with plug‐
gable support for load balancing, tracing, health checking, and
authentication. It is also applicable to embedded devices, mobile
applications, and browsers. While RPC was initially considered
harmful in microservice systems, it’s still widely popular. gRPC
addresses the issues encountered with traditional RPC mechanisms,
such as blocking calls and partial failures. However, be aware that
sharing a contract (interface) between the provider microservice
and consumers may limit your agility. Vert.x provides HTTP/2 cli‐
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ent and servers. In addition, it has the ability to create and consume
gRPC services.

Vert.x Versatility
While this report has focused on reactive microservices, this is only
a single facet of Vert.x. The richness of the Vert.x ecosystem lets you
develop lots of different applications. Thanks to its execution model,
your applications will be asynchronous and will embrace the reactive
system mantra.

Modern web applications provide a real-time, interactive experience
for users. The information is pushed to the browser and is displayed
seamlessly. The Vert.x event bus can be used as the backbone to
deliver such an experience. The browser connects to the event bus
and receives messages, and can also send messages on and interact
with the backend or with other browsers connected to the event bus.

The Internet of things (IoT) is a thrilling domain but also very het‐
erogeneous. There are many protocols used by smart devices. Mes‐
sages often have to be translated from one protocol to another.
Vert.x provides clients for a large set of protocols to implement these
translations, and its execution model can handle the high concur‐
rency required to build IoT gateways.

These two examples illustrate the richness of the Vert.x ecosystem.
Vert.x offers an infinite set of possibilities where you are in charge.
You can shape your system using the programming language you
prefer and the development model you like. Don’t let a framework
lead—you are in charge.
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